ИННОВАЦИИ В СТРОИТЕЛЬСТВЕ

Loporh

ПРОИЗВОДСТВО НЕТКАНЫХ МАТЕРИАЛОВ

нетканый иглопробивной геотекстиль

ГЕОПОЛОТНО ВК, ВКт

для дорожного, железнодорожного и нефтегазового строительства

30 лет опыт производства

уложено автодорог 10 000 км

СЫРЬЕ полиэфир, полипропилен

+7 (351) 729-96-91 www.vtor-kom.ru

Мы в Телеграмм https://t.me/vtorkom

технологии

ПРАКТИКА ПРИМЕНЕНИЯ ПОДПОРНЫХ СТЕН ИЗ ЗАПОЛНЕННЫХ ГРУНТОМ БЛОКОВ

В ДОРОЖНОМ СТРОИТЕЛЬСТВЕ

Ю. В. НОВАК, к. т. н., почетный транспортный строитель РФ, зам. ген. директора по научной работе АО «ЦНИИТС»;

Н. Я. ЦИМБЕЛЬМАН, к. т. н., директор департамента геоинформационных технологий ФГАОУ ВО «ДВФУ»;

И. В. КУЗОВАТКИН, аспирант ФГАОУ ВО «ДВФУ»;

Т. И. ЧЕРНОВА, ст. преподаватель департамента геоинформационных технологий ФГАОУ ВО «ДВФУ»;

В. Н. БАБКИН, генеральный директор ООО «КорБет»; Д. Ю. ИВАННИКОВ, инженер-проектировщик ООО «КорБет»; К. А. СОКОЛОВ, менеджер проектов ООО «КорБет»

В СТАТЬЕ РАССМАТРИВАЮТСЯ НОВЫЕ ПЕРСПЕКТИВНЫЕ КОНСТРУКТИВНЫЕ РЕШЕНИЯ ПОДПОРНЫХ СООРУЖЕНИЙ, УЖЕ ХОРОШО ЗАРЕКОМЕНДОВАВШИЕ СЕБЯ В ПРАКТИКЕ ДОРОЖНОГО СТРОИТЕЛЬСТВА. РАССМОТРЕНА КОНСТРУКЦИЯ ПОЛУМАССИВНЫХ ПОДПОРНЫХ СТЕН, СОСТОЯЩИХ ИЗ ПУСТОТЕЛЫХ БЛОКОВ-КОРОБОВ, ЗАПОЛНЯЕМЫХ ЩЕБНЕМ, ПОКАЗАНО МЕСТО РЕШЕНИЯ В ОБЩЕЙ КЛАССИФИКАЦИИ ПОДПОРНЫХ СТЕН ПО ПРИЗНАКУ ВОВЛЕЧЕНИЯ ГРУНТА В РАБОТУ СТЕНКИ НА УСТОЙЧИВОСТЬ. ПРИВЕДЕНЫ ПРИМЕРЫ УСТРОЙСТВА ТАКИХ СТЕН НА ОБЪЕКТАХ ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА.

ВВЕДЕНИЕ

Ввиду широкого разнообразия расчетных условий, включая условия строительства и эксплуатации объекта, в строительной науке и практике выработано большое многообразие конструктивных решений подпорных стен. Требования ускорения процесса строительства, оптимизации стоимости конструкций при соблюдении надлежащего качества работ и обеспечении надежности сооружений приводят к появлению новых конструктивных решений, среди которых все большую популярность в инженерной среде приобретают полугравитационные (полумассивные) конструкции, где грунт является не только внешней средой, но и важным конструктивным элементом, обеспечивающим прочность и устойчивость объекта.

Рассматриваемое концептуальное решение применяется с начала 2000-х гг. в Японии и постепенно, путем адаптации конструкции, методов расчета и технологии возведения, входит в практику отечественного строительства. Подпорное сооружение представляет собой

ступенчатую конструкцию из отдельных, не связанных между собой жесткими конструктивными связями пустотелых блоков, заполненных уплотненным грунтом (щебнем). Возведенное по данной технологии сооружение, наряду с другими важными преимуществами, обладает способностью сохранять свои эксплуатационные качества при небольших подвижках отдельных элементов, что характерно для объектов транспортного дорожного строительства, воспринимающих динамическое нагрузки (транспортная вибрация, удары, сейсмика).

КЛАССИФИКАЦИЯ ПОДПОРНЫХ СТЕН В ДОРОЖНОМ СТРОИТЕЛЬСТВЕ

В дорожном строительстве подпорные стены служат для удержания от обрушения насыпей и выемок, используются при возведении устоев мостов и других объектов. В качестве основного критерия классификации может быть принято конструктивное решение, обеспечивающее устойчивость сооружения [1]:

- 1. Массивные подпорные стены. Устойчивость стен данного типа достигается за счет собственного веса, обеспечивающего сохранение проектного положения. Подобное конструктивное решение не предусматривает вовлечения грунта в целях сохранения устойчивости стены и, как следствие, характеризует данные сооружения как сравнительно материалоемкие и трудозатратные при возведении.
- 2. Полумассивные подпорные сооружения, напротив, вовлекают в работу стены окружающий грунт, давление которого обеспечивает дополнительные удерживающие силы. Данный тип подпорных стен представлен широким спектром конструктивных решений:
- комбинированные подпорные стены, обеспечивающие запас устойчивости за счет предусмотренных в конструкции стены консолей или заполняемых грунтом полостей;
- тонкоэлементные подпорные стены, в базовой конфигурации состоящие из связанных друг с другом железобетонных плит: вертикальной ограждающей панели и горизонтальной фундаментной плиты; среди стен такого типа наиболее широко применяются уголковые подпорные стенки; быстровозводимы и относительно дешевы, но обладают значительными ограничениями по высоте и, как правило, лишены эстетической привлекательности;
- тонкие подпорные стены, состоящие из тонкой стены ограждения, представленной металлическими или железобетонными сваями, и системы анкеровки в виде анкерных тяг или тонких железобетонных плит.
- 3. Армогрунтовые подпорные стены, использующие армированный грунт в качестве основного элемента конструкции в комбинации с облицовкой и армирующими элементами в виде геосинтетических или металлических мембран, эффективно вовлекают в работу окружающий грунт и могут быть возведены на большую высоту. При этом требуется значительный объем выемки грунта, что, как правило, влечет за собой дополнительные трудозатраты и может оказаться невозможным в силу окружающей объект строительства инфраструктуры.

Среди современных типов полугравитационных (полумассивных) подпорных стен выделяются сооружения комбинированного вида, составляемые из отдельных пустотелых блоков, заполняемых грунтом.

ПОДПОРНЫЕ СТЕНЫ ИЗ ЗАПОЛНЕННЫХ ГРУНТОМ БЛОКОВ

Конструкционные подпорные блоки (КБП) представляют собой тонкостенные железобетонные блоки-коробы (рис. 1) с внутриблочным и заблочным заполнением щебнем. Специальная форма блоков исключает контакт

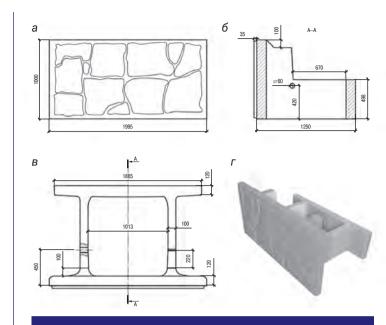


Рис. 1. Блок КБП 100/200: а — вид спереди; б — поперечное сечение; в — вид сверху; г — аксонометрия (размеры в мм)

типа «бетон-бетон», что позволяет продлить срок службы сооружений и избежать возможных деформаций как во время строительства, так и во время эксплуатационного периода.

Блоки не имеют жесткой связи между собой, что допускает возможность малых подвижек конструкционных элементов подпорной стены и, следовательно, позволяет применять конструкции данного типа в сейсмически активных регионах. В проектном положении блоки КБП удерживаются за счет собственного веса и сил трения по подошве каждого блока.

Сборные дифференцированные подпорные стены имеют ряд неоспоримых преимуществ перед традиционными монолитными конструкциями, таких как быстрый монтаж-демонтаж и отсутствие «мокрых» процессов при возведении, а также эстетичность, конструктивная гибкость и сравнительно высокая устойчивость к динамическим нагрузкам.

ПРИМЕНЕНИЕ В ДОРОЖНОМ СТРОИТЕЛЬСТВЕ

Опыт последних лет показывает высокие темпы роста количества объектов транспортной инфраструктуры, построенных с применением описанной технологии. Возросший интерес со стороны строительных компаний, а также проектных организаций, свидетельствует о преодолении барьеров, характерных на начальном этапе применения инновационных конструктивных решений и

33

технологии



Рис. 2. Крепление дорожной насыпи, трасса Де-Фриз – Патрокл

выражающихся недоверием к технологии ввиду новизны и отсутствия показательных объектов.

Апробация строительства объектов транспортной инфраструктуры прошла на Дальнем Востоке. Наиболее показательным объектом можно считать участок трассы Де-Фриз — Патрокл (рис. 2), на этапе строительства которого в 2011 году было реализовано крепление дорожной насыпи общей площадью сооружения 4639 м2 и высотой до 7 м [2].

Немаловажным фактором применения технологии в современном транспортном строительстве является скорость возведения сооружений. На примере одного из проектов шестого этапа строительства скоростной трассы М-12 Москва — Нижний Новгород — Казань специалистами Центра методологии нормирования и стандартизации в строительстве (АО «ЦНС») был произведен учет всех этапов строительства устоя моста. По заключению специалистов центра, экономия в затратах труда рабочих по сравнению с аналогичным проектом на основе технологии армогрунтовых подпорных стен составила 1452 чел.-ч.

Еще одним фактором доверия, а также востребованности технологии для отечественного транспортного и мостового строительства, стало ее включение в проекты сводов правил по проектированию и строительству: СП 35.13330. СП 46.13330.

Реализованные объекты транспортного строительства (рис. 3-5):

Рис. 3. Путепровод, 0-й этап трассы М-12 (пос. Большие Дворы)

Рис. 4. Устой моста через р. Шаратка, 7-й этап трассы М-12

Рис. 5. Устой моста через Осипов овраг, 7-й этап трассы M-12

ЗАКЛЮЧЕНИЕ

Проблема крепления дорожных насыпей и откосов мостов весьма актуальна на сегодняшний день. Массовое строительство мостов на магистральных дорогах, таких как ЦКАД, КАД СПб, М-12, М-4 и др., поставило перед проектировщиками и строителями задачу, заключающуюся в разработке надежных конструкций. Такими, на наш взгляд, и являются подпорные стены из тонкостенных блоков, заполненных щебнем (КБП).

Рассмотренная в данной статье технология прошла все этапы апробации и успешно применяется на самых ответственных объектах транспортного, мостового и промышленно-гражданского строительства. На сегодня построено и успешно эксплуатируется более 50 тыс. м² таких конструкций.

Среди преимуществ КБП стоит выделить надежность всех элементов, адекватную расчетную схему, малую трудоемкость возведения, простоту обслуживания, возможность строительства стен высотой более 10 м, сейсмостойкость, а также архитектурные достоинства.

Отмечаем, что конструкции из блоков КБП имеют хорошую перспективу применения как на магистральных дорогах, так и в условиях городской застройки. Технология поддержана проектировщиками, строителями и заказчиками.

Литература

- 1. Цимбельман Н.Я. Надежда и опора // Наука и жизнь 2009 № 8 с. 60-65.
- 2. Цимбельман Н.Я., Кузоваткин И.В., Котык Я.И., Иванников Д.Ю., Бабкин В.Н. Методика расчета и практика применения подпорных стен из блоков с грунтовым наполнителем // Сборник «Дороги и мосты» ФАУ «РОСДОРНИИ», 2022 № 48.

